Энергия комфорта
С нами всегда можно договориться
9.00-18.00
time-line
info@climag.ru
+7 (499) 391-99-76 +7 (925) 742-23-80
Заказать звонок

Для чего нужны стабилизаторы напряжения?

В современном загородном доме, даче, квартире или офисе от электросети питается практически все. При этом качество потребляемой электроэнергии оставляет желать лучшего. Каждый из нас, и в особенности те, кто живут в загородных домах, неоднократно сталкивался с перебоями электроснабжения, что незамедлительно сказывалось на работе электроприборов.

Подача тока в электросети может быть нестабильна по самым разным причинам. Это и аварии на подстанциях и линиях электропередач, и старые трансформаторы, и провода, а также множество других непредвиденных обстоятельств, способных вызвать отклонения величины подаваемого напряжения от номинального.

В случае падения напряжения тускло горит свет, происходит прерывание в работе бытовой техники, аппаратуре связи. Некоторые приборы, такие как стиральные машины, холодильники, СВЧ-печи и компьютеры в условиях пониженного напряжения вообще не могут работать. При повышенной подаче электричества приборы попросту перегорают, причем порой вне зависимости от того, работают они в момент аварии, или нет. А сбой в работе автономного тепло- или водоснабжения загородных домов и коттеджей, а также водяных насосов, водонагревательных котлов, охранных систем может привести к их остановке и поломке.

Чтобы избежать вышеперечисленных потерь и чувствовать себя независимым от подобных электросюрпризов, необходимо установить стабилизатор напряжения сети. Стабилизатор включается между "скачущей" сетью и потребителем электроэнергии, позволяя поддерживать в электрической сети заданное напряжение. Иначе говоря, прибор защищает оборудование от перенапряжения, высоковольтных импульсов, бросков и "просадок" питающего напряжения. Стабилизатор автоматически поддерживает на нагрузке уровень напряжения в 220В при отклонениях от нормы величины входного напряжения питающей сети. Он надежно защищает любую, даже самую капризную аппаратуру от внезапного значительного изменения в электросети, например, от скачка до 380В.

Принцип работы и виды стабилизаторов напряжения

Стабилизаторы напряжения различаются между собой по принципу регулировки напряжения, что позволяет условно разделить их на следующие основные группы:

Феррорезонансные стабилизаторы относятся к одним из самых старых типов стабилизаторов напряжения. Их высокий уровень шума при работе, искажение синусоиды и помехи, недопустимость перегрузки и режима холостого хода, большой вес и габариты компенсируются практически мгновенным быстродействием и надёжностью.

Сервоприводные стабилизаторы (электромеханические следящие системы) позволяют плавно регулировать напряжение без прерывания фазы и искажения синусоиды. Основу их схемы составляет регулируемый автотрансформатор, включённый первичную обмотку вольтодобавочного трансформатора. Вторичная обмотка включается в разрыв фазы сети. Стабилизаторы такого типа достаточно компактны и пригодны для использования при любых нагрузках. Работа сервоприводных стабилизаторов обеспечивается за счет сервопривода, который перемещает бегунок вдоль витков трансформатора так, чтобы обеспечивалось постоянство напряжения на выходе. Стоимость подобных стабилизаторов ниже, чем остальных, но это же относится и к их надежности из-за большого числа механических узлов. Среди преимуществ стабилизаторов напряжения на основе электромеханической системы можно выделить в несколько раз больший рабочий ресурс в отличие от корректоров на электронных ключах и реле, высокую точность удержания выходного напряжения в 220В (2%), плавность регулировки со скоростью от 20 до 50 В/с, отсутствие помех при работе, отсутствие искажений формы напряжения, хорошую нагрузочную способность, широчайший диапазон коррекции (100 – 280В), возможность организации систем с широким рядом номинальных мощностей.

Релейные стабилизаторы (корректоры напряжения или ступенчатые стабилизаторы) являются самым дешёвым и массовым типом универсальных стабилизаторов. Их схема основана на коммутации отводов автотрансформатора с помощью электронных коммутаторов. Напряжение на выходе стабилизатора изменяется ступенчато. Прерывание напряжения при переключении у разных моделей составляет от 2 до 12 мс (для реле – 5-7 мс). Корректоры напряжения имеют широкий диапазон входного напряжения, высокую точность поддержания выходного напряжения, не вносят искажений во внешнюю сеть и надёжно работают при любых изменениях нагрузки. Они обеспечивают эффективную защиту от перегрузки, короткого замыкания и импульсных помех. Релейные стабилизаторы являются средним звеном между электронными и сервоприводными. Коммутация обмоток в данных стабилизаторах напряжения происходит за счет блока силовых реле. Достоинством этих приборов является их сравнительная дешевизна, а недостаток заключается в ограниченности срока службы, что обусловлено наличием реле, являющимся по сути своей механическим элементом.

Электронные стабилизаторы используют для регулировки напряжения переключение части обмоток трансформатора (или автотрансформатора) с помощью силовых тиристоров или других электронных ключей. Наибольшую надежность имеют электронные стабилизаторы, в которых роль исполнительного механизма отводится электронным ключам. Эти приборы надежны в работе, имеют большое быстродействие и практически бесшумны. Но стоят они почти вдвое дороже, чем их механические аналоги. Достоинства таких стабилизаторов — отсутствие контактов, и, как следствие, большая надежность и срок службы, меньшая масса. Недостатками являются дискретность регулирования выходного напряжения, более высокая цена, для трехфазных стабилизаторов фактически необходимо 3 однофазных стабилизатора в одном устройстве.

Однако, даже самые современные и качественные электромеханические стабилизаторы, т.е. построенные на принципе изменения коэффициента трансформации с помощью симисторов (тиристоров) или реле, имеют ряд характерных принципиальных недостатков, связанных с инерционностью регулирования напряжения сети. Главный из них – задержка реакции на изменение входного сигнала, составляющая обычно несколько периодов сетевого напряжения. Таким образом, в случае резкого перенапряжения в сети, выходное напряжение во время задержки реакции и в зависимости от текущего коэффициента трансформации может достигать больших значений. Данный факт может является неприемлемым для защищаемой нагрузки, особенно для высокоточного электронного оборудования, используемого в частности при организации систем связи. Кроме того, к недостаткам современных стабилизаторов, реализованных на основе классических методов, можно отнести трансляцию искажений сети на выход, что особо критично в распространённых случаях некачественного электропитания, и возможность общего негативного влияния на внешних потребителей и электропроводку, связанную с отсутствием фильтрации и коррекции тока нагрузки.

Инверторные стабилизаторы переменного напряжения нового поколения, построенные по принципу двойного преобразования энергии, позволяют решить вышеуказанные проблемы. В основу работы данных устройств заложена инновационная технология стабилизации напряжения Instant Reaction & Double Conversion (мгновенная реакция и двойное преобразование). Это уникальная технология нового поколения, разработку которой можно без преувеличения назвать технологическим прорывом в сфере стабилизации электрической энергии. Она сочетает в себе самые современные принципы импульсной преобразовательной техники: принцип непрерывного высокочастотного ШИМ - регулирования, обеспечивающий мгновенную скорость реакции на изменение сети и, уже упомянутый выше, принцип двойного преобразования энергии, позволяющий буферизировать энергию, что исключает мгновенное изменение выходного напряжения при резком скачке входного и дает возможность осуществлять коррекцию напряжения сети и потребляемой мощности, в том числе компенсацию реактивной составляющей мощности нагрузки. Основные преимущества инверторных стабилизаторов:

  • мгновенная реакция на отклонение входного напряжения (0 мс);
  • широкий диапазон входного напряжения (90-310 В);
  • идеальное синусоидальное выходное напряжение с высокой точностью стабилизации (± 2%);
  • коррекция входного коэффициента мощности;
  • полное управление на основе высокопроизводительного цифрового сигнального процессора;
  • многоуровневая аварийная защита от перегрузки, перегрева, короткого замыкания, повышенного и пониженного входного напряжения, электрических помех в сети электропитания, высоковольтных выбросов, колебаний частоты, переходных процессов при коммутации и нелинейных искажений;
  • интеллектуальная защита нагрузки от неисправности и сбоев в работе стабилизатора;
  • возможность создания параллельных резервируемых конфигураций по схеме N+1;
  • возможность «горячей» замены силовых модулей;
  • низкий уровень шума при работе;
  • расширенные возможности мониторинга состояния и основных параметров работы;
  • минимальные габариты и вес.

В настоящее время, благодаря высокому уровню качества и надежности, инверторные стабилизаторы широко востребованы в отраслях медицины, связи, энергетики, транспорта, промышленности, а также в силовых структурах.

Критерии выбора стабилизатора напряжения

Для правильного выбора стабилизатора необходимо знать полную мощность, потребляемую всеми электроприборами вашего дома. Следует обратить внимание на то, что полная мощность каждого прибора указывается на прикрепленной к нему табличке в Вольт-Амперах (ВА). Если же на приборе мощность указывается в Ваттах (Вт), то речь идет лишь об активной мощности, являющейся частью полной потребляемой мощности. Определяя мощность стабилизатора, необходимо учесть наличие в доме электромоторов, которым в момент пуска необходим ток, превосходящий номинальный в 3-6 раз. Это относится к холодильникам, компрессорам и насосам. Выбирая стабилизатор, необходимо учесть коэффициент трансформации, который снижается прямо пропорционально уровню падения напряжения. Поэтому стабилизаторы выбираются с запасом по мощности 20-30%, а не впритык.

В любом случае, подбирая необходимый для Вашего дома стабилизатор напряжения, вы можете обратиться в CLIMAG.RU, специалисты которого произведут все необходимые расчёты. Подключение стабилизатора для нужд всего дома производится, как правило, на выходе счетчика.

Сайт использует файлы cookies и сервис сбора технических данных его посетителей.
Продолжая использовать данный ресурс, вы автоматически соглашаетесь с использованием данных технологий.